
Ceylan-Oceanic: Enocean facilities in Erlang

Organisation: Copyright (C) 2022-2024 Olivier Boudeville

Contact: about (dash) oceanic (at) esperide (dot) com

Creation date: Wednesday, September 7, 2022

Lastly updated: Sunday, January 14, 2024

Version: 1.4.4

Status: In development

Dedication: Users and maintainers of the Ceylan-Oceanic library.

Abstract: The role of the Ceylan-Oceanic library is to provide
Erlang-based facilities for the support of the Enocean building
automation system.

The latest version of this documentation is to be found at the official Ceylan-
Oceanic website (http://oceanic.esperide.org).

This documentation is also mirrored here.

1

http://oceanic.esperide.org
http://oceanic.esperide.org
https://olivier-boudeville.github.io/Ceylan-Oceanic/

Table of Contents
Overview 4

A Word About Other Standards and Confidentiality 4

Purpose 5

Progress & Enocean Coverage 5

Testing Ceylan-Oceanic in Two Steps 5

Hardware Prerequisites 6

Operating System Support 6

Software Prerequisites 7
Erlang . 7
Serial . 7
Ceylan-Myriad . 8
Ceylan-Oceanic . 8

Testing Enocean 9
Basic, Direct Command-line Testing 9
With a Graphical Serial Terminal . 9

Configuring Oceanic 9

Testing Oceanic 11
First test: executing a few Common Commands 11
Second test: controlling an actual device 12

Oceanic Listener Messages 16

Enocean Documentation 18

Protocol Information 18
Guarding Against Spoofing: Lying about One’s Source EURID Will

Not Suffice . 18
Other Network-Related Risks . 20
Studying Actual Protocols . 21
Usage Hints . 21

Good Practices . 21
Pairing . 22
Buttons vs Rocker: Transition vs State 22
Eltako Socket switching actuator FSSA 22

Troubleshooting 23

Support 23

Additional Information 23

2

Similar Projects 24

Please React! 24

Ending Word 24

3

Overview
The Ceylan-Oceanic library provides Erlang-based facilities for the support of
the Enocean building automation system, an open standard whose devices are
generally energy-harvesting / very low-consumption, and wireless (supported
frequencies around 900 MHz, depending on countries; for a range of up to 300
meters in the open, and up to 30 meters inside buildings) with very low traffic.

So Enocean, whose slogan could be "no wire, no battery", is rather unique.
No Wifi involved (and very little radio frequency exposure: due to energy con-
straints, few short, terse telegrams are exchanged; no real risk of interferences),
no IP connectivity either, hence no real risk in terms of health or privacy/data
leak (see next section), as Oceanic just receives / decodes / encodes / emits
series of well-determined bytes, and remains in full control at all times: the
gateway can only communicate with its host (hence with Oceanic), moreover
through a low-level USB serial interface (no third-party driver involved on that
hosting computer), and the devices only send tiny telegrams that can be listened
to only at short range (up to a few dozens meters).

Finally, at least most of the Enocean specifications are freely available.
Besides Erlang, Ceylan-Oceanic relies only on Ceylan-Myriad and is a rather

autonomous part of the Ceylan project. Ceylan-Oceanic can be readily built
and run on most Unices, including of course GNU/Linux. An example of use of
Oceanic is our US-Main home automation server, especially its sensor manager.

The Ceylan-Oceanic project repository is located here.
At least a basic knowledge of Erlang is expected in order to use Ceylan-

Oceanic.

A Word About Other Standards and Confidential-
ity
Compared to Enocean, more recent technologies and open standards exist, in-
cluding Matter. They are increasingly promoted by Amazon, Apple and Google,
so that they integrate with their respective home assistants; they communicate
over IP.

Such devices are certainly convenient and often cheap, yet, as for us, we
prefer not having in our home "Big Five"-originating black boxes generally full of
sensors, cameras and microphones, running closed, proprietary, transparently-
upgradable software, having their own IP connectivity (they typically obtain
through DHCP their own local IP address) and therefore able to communicate
rather freely with any "cloud" on the Internet (in practice, almost nobody blocks
outgoing traffic from such dynamically-allocated IPs, knowing moreover that
these devices often rely on Internet services and expect to regularly update
their software).

So we are a bit puzzled that so many people trust such home automation
devices to the point of actually happily purchasing them, and placing them at
the core of their home - whereas there are already examples showing, if necessary,
that their owner is certainly not in full control of them.

Many will consider that non-IP protocols like Enocean or Z-Wave are already
superseded by newer technologies like the aforementioned Matter system. An-
other point of view is that a standard like Enocean (that is moreover interesting

4

http://erlang.org
https://en.wikipedia.org/wiki/EnOcean
https://www.enocean-alliance.org/specifications/
https://github.com/Olivier-Boudeville/Ceylan-Myriad
https://github.com/Olivier-Boudeville/Ceylan
https://us-main.esperide.org/#home-automation
https://github.com/Olivier-Boudeville/us-main/blob/master/src/class_USSensorManager.erl
https://github.com/Olivier-Boudeville/Ceylan-Oceanic
https://en.wikipedia.org/wiki/Matter_(standard)
https://www.eff.org/fr/deeplinks/2022/07/ring-reveals-they-give-videos-police-without-user-consent-or-warrant

for its unique energy-harvesting capabilities) is probably the last (and thus the
most advanced one) that can be easily trusted.

It could also be argued that all wireless protocols are flawed anyway, as
they can be relatively easily snooped and/or jammed, as opposed to wired ones
(like with KNX, X10 and other PLC-based ones) that are by design safer /
more reliable (albeit more expensive). At least for new buildings (as opposed to
partially-renovated ones), such wired systems could be considered, but, to the
best of our knowledge, no such practical (open, affordable, future-proof) option
exists (and this is a bit of a pity).

So overall we consider that sticking to Enocean makes sense, hopefully for a
long time.

Purpose
The main motivation of Oceanic is to provide some basic home automation
features, especially here in terms of security, in order to be able to:

• intercept and decode telegrams emitted by sensors - notably single-
input contacts (to detect the opening/closing of doors or windows), pres-
ence or temperature / humidity sensors or to detect electricity outages,
sensor losses (having been sabotaged or running out of energy), jamming
attempts, typically in order to implement one’s own alarm center; should
a security event happen, a network camera can be switched on, e-mails
and/or SMS can be sent, etc.

• generate and emit telegrams to control any kind of electrical devices
(driven by a smart plug or an in-wall module), typically to turn on an
electric heater or to run one’s own presence simulator (possibly with lamps
and sound devices)

Progress & Enocean Coverage
The targeted basic Enocean support has been implemented, so EEP Enocean
telegrams can be intercepted and, for the supported EEPs (other ones may be
quite easily added), such telegrams can be properly decoded and notified as
higher-level, incoming events to be managed by one’s application.

Reciprocally, telegrams for the supported EEPs can also be encoded and
sent, and they are able to trigger appropriately-configured (Enocean) devices
(actuators).

Oceanic can also execute a few common commands directly onto the local
USB gateway chip.

Testing Ceylan-Oceanic in Two Steps
Now, let’s discuss all these subjects a bit more in-depth.

5

https://mobile.esperide.org

Hardware Prerequisites
In terms of Enocean devices, one needs typically:

• any kind of emitter/sensor device, for example a single-input contact/rocker
button like these ones; opening sensors are also convenient, as we can eas-
ily act on them directly

• a general-purpose emitter/receiver, typically a USB gateway, which in-
cludes a UART for asynchronous serial communication with an integrated
RF module

For that popular USB dongles can be purchased, which often rely on the
TCM 310 chip; this includes the USB300 one (around 37 Euros in France), or
the USB310 one (around 50 Euros in France) that we prefer, as it features a
SMA connector, which allows an external antenna to be connected in order to
boost emission / reception ranges inexpensively.

We will rely here on such a configuration.

Operating System Support
Once the USB dongle is connected (here on an Arch Linux host), lsusb tells us
that it is detected as:

Bus 003 Device 009: ID 0403:6001 Future Technology Devices International, Ltd FT232 Serial (UART) IC

(which applies both to USB300 and USB310)
We will interact with this USB gateway as if it was a serial port.
Rather than having it designated by an obscure, potentially changing name

(like /dev/ttyUSB0, /dev/ttyUSB1, etc.), we prefer assigning it a fixed, clearer,
well-chosen path, like /dev/ttyUSBEnOcean.

For that, one may define a suitable udev rule, typically stored in /etc/udev/rules.d/99-enocean.rules,
whose content can simply1 be:

SUBSYSTEM=="tty", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6001", SYMLINK+="ttyUSBEnOcean", MODE="0666"

Following extra option could be added to the previous line, in order to set
the group of this TTY: GROUP="dialout" or GROUP="uucp" (depending on the
system’s conventions), in which case your user shall be in that group (rather
than executing sudo chmod 777 /dev/ttyUSB0 each time the USB dongle is
inserted for example).

So one may prefer:

SUBSYSTEM=="tty", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6001", SYMLINK+="ttyUSBEnOcean", GROUP="uucp", MODE="0660"

and, to ensure that the user of interest for Oceanic (let’s name it stallone)
belongs to that group:

$ sudo usermod -a -G uucp stallone

1Note though the different roles played by == (for matching) and = (for assignment).

6

https://www.enocean.com/en/product-category/kinetic-switches-finished-products/?frequency=902
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://www.enocean.com/wp-content/uploads/downloads-produkte/en/products/enocean_modules/tcm-310/user-manual-pdf/TCM310_UserManual_Oct2019.pdf
https://www.enocean.com/en/product/usb-300-500u-400j/
https://en.wikipedia.org/wiki/SMA_connector

One may then run sudo udevadm control --reload-rules && sudo udevadm
trigger to ensure that these changes are taken into account from now on.

Then inserting said USB dongle should generate log entries that journalctl
-xe can show, like (timestamps and hostname edited):

kernel: usb 3-11: new full-speed USB device number 9 using xhci_hcd
kernel: usb 3-11: New USB device found, idVendor=0403, idProduct=6001, bcdDevice= 6.00
kernel: usb 3-11: New USB device strings: Mfr=1, Product=2, SerialNumber=3
kernel: usb 3-11: Product: FT232R USB UART
kernel: usb 3-11: Manufacturer: FTDI
kernel: usb 3-11: SerialNumber: A600AVJD
mtp-probe[74533]: checking bus 3, device 9: "/sys/devices/pci0000:00/0000:00:14.0/usb3/3-11"
kernel: ftdi_sio 3-11:1.0: FTDI USB Serial Device converter detected
kernel: usb 3-11: Detected FT232RL
kernel: usb 3-11: FTDI USB Serial Device converter now attached to ttyUSB0
mtp-probe[74533]: bus: 3, device: 9 was not an MTP device
mtp-probe[74548]: checking bus 3, device 9: "/sys/devices/pci0000:00/0000:00:14.0/usb3/3-11"
mtp-probe[74548]: bus: 3, device: 9 was not an MTP device

On insertion we have then, with the former settings:

$ ls -l /dev/ttyUSBEnOcean /dev/ttyUSB0
crw-rw---- 1 root uucp 188, 0 Nov 13 10:24 /dev/ttyUSB0
lrwxrwxrwx 1 root root 7 Nov 13 10:24 /dev/ttyUSBEnOcean -> ttyUSB0

Software Prerequisites
Ceylan-Oceanic relies on general-purpose services offered by Ceylan-Myriad (im-
plying of course Erlang itself), and on a suitable Erlang driver for serial com-
munication.

Erlang
If needed, follow these Myriad guidelines for installing Erlang in order to obtain
a proper, recent-enough version thereof.

Serial
We use our version2 of erlang-serial for that, which we generally prefer, for
standalone use, installing in user space (rather than in the system tree and
embedded in a release) that way:

$ mkdir ~/Software && cd ~/Software
$ git clone https://github.com/Olivier-Boudeville/erlang-serial
$ cd erlang-serial
$ make && DESTDIR=. make install

2This is a fork of the original erlang-serial, which had to be modified notably in terms of
disabled RTS/CTS flow control, in order to be able to properly send data to the Enocean
gateway.

7

http://myriad.esperide.org
https://myriad.esperide.org/#software-prerequisites
https://myriad.esperide.org/#software-prerequisites
https://github.com/Olivier-Boudeville/erlang-serial
https://github.com/tonyg/erlang-serial

Then using erlang-serial will be just a matter of adding it to one’s code
path3.

To test this erlang-serial installation (whether or not any dongle is con-
nected):

$ erl -pa $HOME/Software/erlang-serial/erlang/lib/serial-1.1/ebin
Erlang/OTP 25 [erts-13.0] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]

Eshell V13.0 (abort with ^G)
1> serial:start().
<0.82.0>

Perfect!
However we noticed repeatedly that after a few days the communication

seemed to freeze bilaterally. Resetting serial once a day (e.g. at midnight)
seemed to solve that problem.

However, after longer durations (e.g. 10 days), another issue happened:
serial was still able to send telegrams, but not to receive any of them any-
more - despite being restarted (indeed its PID was different each day as ex-
pected) and the TTY receiving the corresponding telegrams (as shown by od
-x < /dev/ttyUSBEnOcean).

So we believe there is a defect in serial, but we could not figure out where.
Ideas and contributions welcome!

Ceylan-Myriad
Oceanic expects to find a fully-built Myriad source tree as a sibling of its own
tree, named myriad, and possibly made available through a symbolic link.

As per these Myriad guidelines, this source tree can be obtained by changing
to a directory of choice that will contain both Myriad and Oceanic, and issuing:

$ git clone https://github.com/Olivier-Boudeville/Ceylan-Myriad.git
$ ln -s Ceylan-Myriad myriad && cd myriad && make all && cd ..

Ceylan-Oceanic
From the same parent directory, very similarly:

$ git clone https://github.com/Olivier-Boudeville/Ceylan-Oceanic.git
Symlink just for consistency:
$ ln -s Ceylan-Oceanic oceanic && cd oceanic && make all && cd ..

3Later in the installation one may update the Erlang-serial section in Oceanic’s GNU-
makevars.inc in order to take into account any other path convention. One may then run,
from the root of Oceanic, make info-serial to check that ERLANG_SERIAL_BASE points indeed
to a directory containing erlang-serial’s ebin directory. Otherwise runtime checks will detect
and report any issue.

8

https://myriad.esperide.org/#getting-myriad-s-sources
https://github.com/Olivier-Boudeville/Ceylan-Oceanic/blob/main/GNUmakevars.inc
https://github.com/Olivier-Boudeville/Ceylan-Oceanic/blob/main/GNUmakevars.inc

Testing Enocean
Ensure first that none of the next serial tools / terminals has been left running,
otherwise exclusive access may block your ability to send telegrams thanks to
Oceanic.

To check, one may rely on:

$ lsof /dev/ttyUSBEnOcean
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
serial 214977 your_user 3u CHR 188,0 0t0 1066 /dev/ttyUSB0

Note also that, from that point, EURIDs are altered/edited (fake ones used).
Minor discrepancies may happen.

Basic, Direct Command-line Testing
It is as simple as executing from the command-line (thus without Oceanic, Serial
or even Erlang being involved):

$ od -x < /dev/ttyUSBEnOcean
0000000 0055 0707 7a01 10f6 2e00 96e1 0130 ffff
0000020 ffff 0039 554b 0700 0107 f67a 0000 e12e

(of course for such a binary content to be received, Enocean telegrams must
be emitted; the simplest approach is to trigger any Enocean device able to send
on demand such telegrams, like a button/rocker/switch)

hexdump can be also used to intercept telegrams. If needing to set the trans-
mission speed beforehand, use stty -F /dev/ttyUSBEnOcean 57600.

Incoming data can also be recorded and "replayed" (yet this is not expected
to activate an Enocean receiver, see Protocol Information):

$ cat < /dev/ttyUSBEnOcean > my_record.bin
$ cat my_record.bin > /dev/ttyUSBEnOcean

With a Graphical Serial Terminal
One may use cutecom to directly test input/output telegrams.

A priori neither RTS nor DTR shall be enabled (yet in our tests these had
no impact with cutecom; however not disabling them with Oceanic was leading
to emitting telegrams not understood by their target devices).

We recommend using the Hex input and output.

Configuring Oceanic
Oceanic can be configured thanks to a set of key/value pairs:

• oceanic_emitter :: oceanic:eurid_string() (e.g. {oceanic_emitter,
"002EE196"}) in order to specify the EURID of the pseudo-device emit-
ting any telegram to be sent by Oceanic; otherwise a default value ap-
plies (see default_emitter_eurid); anyway, unless specified otherwise,
Oceanic will switch to the base ID of the Enocean USB dongle once it has
been fetched (through a Common Command, at Oceanic start-up)

9

https://cutecom.sourceforge.net/

• oceanic_jamming_threshold :: system_utils:bytes_per_second()
(e.g. {oceanic_jamming_threshold, 200}) specifies the threshold of
Enocean incoming traffic, in bytes per second, above which an onEnoceanJamming
message shall be sent by Oceanic to any user listener process; consider-
ing an usual Enocean telegram size of 21 bytes, the default threshold
(see default_jamming_threshold), 250 bytes per second, corresponds
roughly to a threshold of a dozen legit telegrams per second

• oceanic_devices :: [oceanic:device_config()] allows to tell Oceanic
about the Enocean devices of interest, by specifying for each of them at
least the following {UserDefinedName, EURIDStr, EEPStr} triplet:

– a user-friendly name for that device: UserDefinedName :: ustring(),
like "My opening detector at the front door"

– its EURID: EURIDStr :: oceanic:eurid_string(), like "0585E962"

– the EEP that it implements: EEPStr :: ustring(), like "D5-00-01"

Extra information can be added in this tuple:

– first, its expected activity periodicity (the average rhythm at which
this device is expected to emit telegrams, to detect if for any reason it
happens to become missing in action), ActPeriod :: oceanic:declared_device_activity_periodicity(),
which may be none (typically if the device emits no spontaneous state
feedback), default (to apply a reasonable default), a DHMS value
(Days/Hours/Minutes/Seconds, like {0,2,15,0}; see time_utils:dhms_duration()),
or learn (to be automatically determined by Oceanic over time; the
default setting)

– then a mere, optional comment, CommentStr :: ustring(), like
"Just a switch, not a rocker; controls the smart plug in the
living room"; only of interest for the user (ignored by Oceanic)

Examples of device configurations (see also the Oceanic settings complete
example below):

• {"My thermo-hygro sensor", "050533EF", "A5-04-01"}

• {"My Foo opening detector", "A18EE2B1", "D5-00-01", {0,0,25,0}}

• {"My outdoor double-rocker switch", "002B6B15", "F6-02-01", learn,
"Presumably hidden in the well"}

These configuration information can be provided either thanks to the Ceylan-
Myriad preferences system (see the preferences module; this usually boils
down to an ETF file, by default ~/.ceylan-settings.etf) and/or program-
matically (see the oceanic:add_configuration_settings/2; in which case
these settings would take priority over any set preferences).

Note that, should a device have a repeater ability activated, Oceanic may
detect also the Enocean gateway it is using (as it may receive back its own
sendings).

10

https://myriad.esperide.org/#etf

Testing Oceanic

First test: executing a few Common Commands
This consists in having Oceanic discuss with the local USB gateway dongle,
regardless of any actual Enocean device.

From the root of the Ceylan-Oceanic clone, supposing that Myriad and
erlang-serial are already available and built (whereas here debug flags have been
activated, see Oceanic’s GNUmakevars.inc):

Ensure erlang-serial is available:
$ make info-serial
ERLANG_SERIAL_BASE = /home/stallone/Software/erlang-serial/erlang/lib/serial-1.1

Ensure that Ceylan-Oceanic is built:
$ make all

$ cd test

Triggering a Common Command does not need any target device:
$ make oceanic_common_command_run

Running unitary test oceanic_common_command_run (third form) from oceanic_common_command_test

--> Testing module oceanic_common_command_test.

Testing the management of Common Commands.
[debug] Using TTY ’/dev/ttyUSBEnOcean’ to connect to Enocean gateway, corresponding to serial server <0.86.0> (speed: 57600 bits per second).
[debug] Discovering our base EURID.
[debug] Sending to serial server <0.86.0> actual telegram <<85,0,1,0,5,112,8,56>> (hexadecimal form: ’5500010005700838’).
[debug] Waiting initial base request (ToSkipLen=0, AccChunk=<<>>).
[debug] Read telegram <<85,0,5,1,2,219,0,255,162,223,0,10,180>> of size 13 bytes (corresponding to hexadecimal ’5500050102db00ffa3df000ab4’).
[debug] Trying to decode ’<<85,0,5,1,2,219,0,255,162,223,0,10,180>>’ (of size 13 bytes)
[debug] Start byte found, retaining now following chunk (of size 12 bytes; after dropping 0 byte(s)):
<<0,5,1,2,219,0,255,162,223,0,10,180>>.

[debug] Examining now following chunk of 12 bytes:<<0,5,1,2,219,0,255,162,223,0,10,180>>.
[debug] Packet type 2; expecting 5 bytes of data, then 1 of optional data; checking first header CRC.
[debug] Header CRC validated (219).
[debug] Detected packet type: response_type.
[debug] Full-data CRC validated (180).
[debug] Decoding a command response, whereas awaiting command of type co_rd_idbase, based on telegram <<85,0,1,0,5,112,8,56>> of size 8 bytes
(corresponding to hexadecimal ’5500010005700838’), on behalf of requester internal.
[debug] Returning the following internal response: read gateway base ID ffa3df00, for 10 remaining write cycles.
[debug] Successfully read gateway base ID ffa3df00, for 10 remaining write cycles.
[info] No preferences file (’/home/stallone/.ceylan-settings.etf’) found.
[debug] Waiting for any message including a telegram chunk, whereas having 0 bytes to skip, and having accumulated <<>>.
[debug] Requested to execute common command ’co_rd_version’, on behalf of requester <0.9.0>.
[...]
[debug] Sending back to requester <0.9.0> the following response: read application
version 2.11.1.0, API version 2.6.3.0, chip ID 19d46ce, chip version 1162805507 and application description ’GATEWAYCTRL’.
[debug] Waiting for any message including a telegram chunk, whereas having 0 bytes to skip, and having accumulated <<>>.

11

Read version: read application version 2.11.1.0, API version 2.6.3.0, chip ID 19d46bc, chip version 1162805507 and application description ’GATEWAYCTRL’.
[debug] Requested to execute common command ’co_rd_sys_log’, on behalf of requester <0.9.0>.
[...]
Read logs: read counters: 6 for application: [254,255,255,255,255,255], and 38 for API: [255,255,255,255,255,255,
255,255].
[debug] Stopping the Oceanic server <0.85.0>.
[debug] Stopping serial server <0.86.0>, while in following state: Oceanic server using serial server <0.86.0>, using emitter EURID ffa3df00,
not having any command pending, based on a time-out of 1 second, with no command queued whereas a total of 2 of them have been issued;
having <0.9.0> registered as listener of Enocean events, having sent 3 telegrams, not having discarded any telegram, and knowing no Enocean device
[debug] Oceanic server <0.85.0> terminated.
Stopped.

--> Successful end of test.

(test finished, interpreter halted)

Second test: controlling an actual device
This more complete test will rely on experimental settings typically involving:

• a controller device (e.g. a double-rocker switch), which will be, once
discovered, spoofed next by Oceanic

• a target device (e.g. a smart plug / socket switching actuator) that
already learnt - according to its own procedure (typically pressing ade-
quately buttons thereof) - the previous controller device; for example a
lamp would be plugged on that actuator so that, when pressing and re-
leasing a given button of the rocker switch, the lamp is toggled (on/off)

The objective is to control that lamp programmatically, through Oceanic
(only).

First, the EURID of the controller device must be determined. Either it can
be directly read from some actual label on the device, or it has to be obtained
through passive listening.

In this last case, start by running the following test (still in oceanic/test):

$ make oceanic_integration_run

Running unitary test oceanic_integration_run (third form) from oceanic_integration_test

--> Testing module oceanic_integration_test.

(test waiting indefinitely for Enocean events; hit CTRL-C to stop)
[debug] Using TTY ’/dev/ttyUSBEnOcean’ to connect to Enocean gateway, corresponding to serial server <0.86.0> (speed: 57600 bits per second).
[debug] Discovering our base EURID.
[...]
[debug] Waiting for any message including a telegram chunk, whereas having no byte to skip, and having accumulated no chunk.

Then act on the controller so that it emits a telegram (e.g. press a button
of said rocker switch; it may be correspond for example to the bottom position
of the first rocker, A).

If in range, the test should intercept it:

12

[debug] Received a telegram chunk of 21 bytes: <<85,0,7,7,1,122,246,48,0,46,225,150,48,1,255,255,255,255,68,0,254>>, corresponding to
hexadecimal 55000707017af630002ef1963001ffffffff4400fe (whereas there are 0 bytes to skip).[...]
[debug] Decoding an ERP1 radio packet of R-ORG f6, hence rorg_rps, i.e. ’RPS (Repeated Switch Communication)’...
[info] Discovering Enocean device 002ef196 through failure.

<----------------
[warning] Unable to decode a RPS (F6) packet for 002ef196: device not configured, no EEP known for it.
---------------->

[debug] Waiting for any message including a telegram chunk, whereas having no byte to skip, and having accumulated no chunk.
[...]

(hit CTRL-C to stop)
So we determined that this rocker switch has for EURID 002ef196.
We can notice that a failure is reported, as Oceanic cannot decode yet the

telegrams from that emitter, short of knowing to which EEP it complies.
As this EEP information is not carried by such packets, it cannot be deter-

mined automatically and has thus to be specified, here once for all through a
proper Oceanic configuration file, typically to be found as ~/.ceylan-settings.etf.

In this ETF file, among possibly other entries unrelated to Oceanic, we may
have:

% Oceanic section:

% Information regarding the pseudo-device emitting any telegram to be sent by
% Oceanic:
%
% (if overriding the base ID of this chip, read as "ffa3df00")
%
%{ oceanic_emitter, "DEADBEEF" }.

% Attempting to spoof my green switch:
%{ oceanic_emitter, "002EF196" }.

% Threshold, expressed in bytes per second, regarding the incoming Enocean
% traffic (received telegrams), in order to trigger onEnoceanJamming events
% should that threshold be exceeded:
%
{ oceanic_jamming_threshold, 200 }.

% A list of device_config() entries, clearer with user-defined names than with
% only raw EURIDs:
%
{ oceanic_devices, [

% Each device is to be described thanks to one of the three following
% configuration terms:

% { UserDefinedName :: ustring(), EURIDStr :: eurid_string(),
% EEPStr :: ustring() } % Then the activity periodicity will be learn

13

https://myriad.esperide.org/#etf

% { UserDefinedName :: ustring(), EURIDStr :: eurid_string(),
% EEPStr :: ustring(), declared_device_activity_periodicity() }

% { UserDefinedName :: ustring(), EURIDStr :: eurid_string(),
% EEPStr :: ustring(), ActPeriod :: declared_device_activity_periodicity(),
% Comment :: ustring() }.

% For the local gateway (useful to decode/check self-encoded telegrams):
{ "my local USB gateway", "ffa3df00", "F6-02-01" },

% Single-input contacts:
{ "my first opening sensor", "060533EC", "D5-00-01", learn, "Battery to be added (too dark)" },
{ "my second opening sensor", "02959F62", "D5-00-01" },

% Temperature and humidity sensors:
{ "my only temperature and humidity sensor", "02A96926", "A5-04-01" },

% Switches:
{ "my green switch", "002EF196", "F6-02-01",

"This is actually a single-rocker switch" },
{ "my white switch", "012F50D6", "F6-02-01" },

% In-wall modules:

% Expected period of about 25 minutes:
{ "my two-channel orange module", "06035E4A", "D2-01-12", { 0, 0, 25, 0 } },

% Socket switching actuators:
%{ "my smart plug", (unknown), (unknown) }

] }.

These entries are pretty self-explanatory and have already been described in
Configuring Oceanic:

• with oceanic_emitter we define the EURID that shall be used by Oceanic
whenever emitting (the default being its in-chip first base ID, as automat-
ically determined thanks to a Common Command)

• with oceanic_jamming_threshold we can define our own level of incom-
ing traffic above which Oceanic shall consider that an attempt of jamming
is taking place

• with oceanic_devices the EEP of the various devices that we want to be
aware of are listed (naming them allows to have clearer Oceanic reports)

Now, as the test explicitly sets the EURID of the emitter, it is just a matter
of updating, in oceanic_static_sending_test.erl, the SourceEurid variable
in order that this test impersonates the controller of interest (here, said green
switch):

14

SourceEurid = oceanic:string_to_eurid("002EF196"),

Running it4 results in:

$ make oceanic_static_sending_run
Running unitary test oceanic_static_sending_run (third form) from oceanic_static_sending_test

--> Testing module oceanic_static_sending_test.

Starting test; note that direct telegram sendings are made here, thus Oceanic will detect responses that do not match with any past request that it sent.
[debug] Using TTY ’/dev/ttyUSBEnOcean’ to connect to Enocean gateway, corresponding to serial server <0.86.0> (speed: 57600 bits per second).
[debug] Discovering our base EURID.

[debug] Successfully read gateway base ID ffa3df00, for 10 remaining write cycles.
[debug] Initial state: Oceanic server using serial server <0.86.0>, using emitter EURID ffa3df00, not having any command pending, based
on a time-out of 1 second, with no command queued whereas none has been issued; not having a listener of Enocean events registered,
having sent a single telegram, not having discarded any telegram, and knowing 8 Enocean devices:
+ device ’my first opening sensor’ (EURID: 060533ec) applying EEP D5-00-01; it has been never seen by this server
[...]
Decoding the ’pressed’ one for the ’off’ button results in following event: double-rocker device ’my green switch’ (whose EURID is 002ef196) has no button
pressed simultaneously at 2022/11/19 23:11:45, declared with a single subtelegram, targeted to the address for broadcast transmission; security
level: telegram not processed; its EEP is double_rocker_switch (F6-02-01)
[...]
All telegrams of interest encoded.
First we press (and then also release) the ’switch off’ button, ’button_ao’ (which must have already been learnt), typically in order to switch on a lamp.
Then, after a short waiting, we press (and then release) this ’switch off’ button again, ’button_ai’, typically to switch off the lamp.
[debug] Sending to serial server <0.86.0> actual telegram <<85,0,7,7,1,122,246,16,1,9,217,112,32,1,255,255,255,255,255,0,204>>
(hexadecimal form: ’55000707017af6100109d9702001ffffffffff00cc’).

The lamp is expected first to turn on, then, and after one second, to turn
off.

Congratulations, your Oceanic program can control electrical appliances!
If this test does not work as intended:

• did the right position of the right button was learnt?

• depending on the switch, apparently:

– either each of the individual buttons will act as a rocker by itself (e.g.
to switch on then off the lamp, a learnt button - top or bottom - of
a given rocker will have to be pressed and released twice5)

– or the whole rocker (that is the pair made of its top and bottom
buttons) will work as intended as a rocker (e.g. to switch on the
lamp, the top button will have to be pressed and released, then, to
switch off the lamp, the bottom button will have to be pressed and
released6)

4The decoding printout corresponds to a check made by this test: prior to sending a
telegram that it just generated, it ensures that it can decode it successfully.

5This is the case for my white switch, an O2 Line Comfort double-rocker; the top and
bottom buttons can then be used indifferently.

6This is the case for my green switch, a VIMAR Vita (single) rocker, for which each button

15

Oceanic Listener Messages
Any number of processes may register to the Oceanic server process, at startup
(see start/2 and start_link/2) and/or later (see the addEventListener /
removeEventListener messages).

These processes will be notified by the Oceanic server of any Enocean event
of interest, thanks to the following types of messages:

• on the first detection of a device:

– if it was declared in the Oceanic configuration: {onEnoceanConfiguredDeviceFirstSeen,
[Event, OcSrvPid]}, where Event :: oceanic:device_event():
corresponds to an Enocean telegram that was just intercepted by the
gateway and decoded, and which was sent by a configured device that
had never been detected before

– if it was not declared in the Oceanic configuration:

∗ if it is known through teach-in: {onEnoceanDeviceTeachIn,
[Event, OcSrvPid]}, where Event :: oceanic:device_event():
corresponds to an Enocean teach-in telegram that was just inter-
cepted by the gateway and decoded, and which was sent by a de-
vice sending that was not even listed in the configuration yet re-
quests (some actuator) to be paired (so not meaning onEnoceanDeviceTaughtIn)

∗ if it is known through passive listening: {onEnoceanDeviceDiscovery,
[Event, OcSrvPid]}, where Event :: oceanic:device_event():
corresponds to a normal (non teach-in) Enocean telegram that
was just intercepted by the gateway and decoded, and which was
sent by a device that was not even listed in the configuration

• {onEnoceanDeviceEvent, [Event, BackOnlineInfo, OcSrvPid]}, where
Event :: oceanic:device_event(): corresponds to an Enocean tele-
gram that was just intercepted by the gateway and decoded, and which em-
anates from a device that has already been detected; if BackOnlineInfo
:: oceanic:back_online_info() specifies whether this device was con-
sidered lost until now (and thus is back online, with some additional in-
formation)

• {onEnoceanDeviceLost, [Eurid, DeviceName, IsNewLoss, LastSeen,
PeriodicityMs, OcSrvPid]}, where LastSeen :: time_utils:timestamp()
and PeriodicityMs :: unit_utils:milliseconds(): notifies that the
Oceanic server detected that a device that was expected to send spon-
taneous state updates apparently failed to do so on time (despite some
reasonable time margin); could have run out of energy, be sabotaged, etc.;
IsNewLoss tells whether this device just transitioned from online to lost,
or if it was already considered lost; if its device is to reappear, it will be
notified as being back online in the next onEnoceanDeviceEvent message

• {onEnoceanJamming, [AggTrafficLvl, OcSrvPid]}, where AggTrafficLvl
:: system_utils:bytes_per_second(): reports that the Oceanic server

has a role. For example, pressing a given button more than once will have no effect (as it
corresponds to a state already reached), only using the other will trigger a new transition.

16

detected a possible jamming attempt (abnormal traffic level of Enocean
telegrams)

These message specify the PID of the Oceanic server (OcSrvPid) notably to
support multiple instances thereof.

17

Enocean Documentation
• [ETS]: Enocean Technical Specifications, notably for:

– [EEP-gen]: EnOcean Equipment Profiles (e.g. version 3.1.4, 36 pages),
a short, general view onto the structure of the various telegram types
that are available (e.g. the RPS one)

– [EEP-spec]: EEP Specification (e.g. version 2.6.7, 270 pages), for a
detailed specification of the various equipment profiles (e.g. F6-01-*
being for Switch Buttons)

• [ESP3]: Enocean Serial Protocol (ESP3) - SPECIFICATION (e.g. version
1.51, 116 pages), a point-to-point packet-based protocol that is lower-level
in the network stack; of lesser interest here)

Note also that, despite the availability of ERP2 specifications, at least most
devices we are aware of rely on ERP1 ones.

Protocol Information

Guarding Against Spoofing: Lying about One’s Source EU-
RID Will Not Suffice
Provided that the serial link is properly configured (in terms of speed, parity,
start/stop bits, RTS/CTS flow control, etc.), apparently even with the default,
usual level of security (that is: none) implemented by the devices that we tested,
Enocean telegrams could not be replayed7: just intercepting a raw telegram and
re-emitting was not acknowledged by the target device and did not trigger its
intended effect on at least our main test actuator (e.g. the smart plug did not
switch on/off).

One explanation could have been that we were re-emitting from Oceanic
"receive" telegrams (as opposed to "send" ones), as we actually always receive
information different from what was sent (e.g. the dbM measure, the repeating
count, etc. are visibly set between the emission and the receiving; and of course
the checksums are modified accordingly) - so replaying a received telegram could
be rejected on these bases.

Nevertheless, forging from scratch proper "send telegrams" (yet carrying the
same functional information) and sending them by ourselves still did not trigger
the actuator (we did multiple tests on multiple devices of different manufactur-
ers).

So we believe that extra information is available to actuators through the
Enocean network stack, that may/will be used by them in order to discriminate
between actual emitters.

This was further confirmed by testing the same telegram exchanges after
having learnt a device, either the real one, or one impersonated by Oceanic:
apparently, only the ones that have been explicitly learnt previously will be
accepted afterwards.

7See the replay_telegrams/1 function in the oceanic_just_send_to_device_test module
for an example.

18

https://www.enocean-alliance.org/specifications/
https://www.enocean-alliance.org/eep/
https://www.enocean-alliance.org/wp-content/uploads/2017/05/EnOcean_Equipment_Profiles_EEP_v2.6.7_public.pdf
https://www.enocean.com/esp

By forging telegrams bearing a source EURID different from the base one,
we came to the conclusion that:

• most if not all telegrams carry a source EURID that can be freely set
(typically through Oceanic calls)

• yet in parallel each emitter (be them an USB dongle controlled by Oceanic
or a "real" device) has its own internal, "base" ID (or a base ID range, for
such dongles); these IDs have the same type as EURIDs, and we suppose
that they can be considered as actual EURIDs - yet they could be han-
dled specifically only in low-level ESP3-like protocols (invisibly from the
"applicative layer" seen when exchanging with the dongle); by default, un-
less specified (see the oceanic_emitter configuration entry), the source
EURID used by telegrams generated by Oceanic match the ID obtained
(through a Common Command) from the USB dongle8

• learning a device relies at least on these internal IDs, sometimes also on
the specified in-telegram source one

• a telegram will be considered by an actuator iff the internal ID of the
emitter carried by this telegram matches with one that has been learnt by
the actuator (hence no easy spoofing with rogue, undeclared emitters)

• the source EURID included in a telegram will designate a device but may
not match the internal ID of the emitter; so for example we could forge,
from Oceanic, telegrams whose source EURID matches the one of an actual
device (a rocker switch) - and therefore did not match the internal ID of
the dongle - while nevertheless, provided that the dongle had already been
learnt by the actuator, typically thanks to a previous Oceanic sending,
we could operate the actuator programmatically (despite these telegrams
having inconsistent IDs)

• yet, do these Oceanic telegrams have to specify the same EURID as used
for their registering, or any already-registered EURID - or would any
EURID would do the trick?

• for the repeating mechanisms to have an interest, their re-emitted tele-
grams must be taken into account by the target actuators; so accepting
already-sent telegrams emanating from different emitters than the one
specified in the telegrams is needed; repeating is most probably handled
transparently by lower-level protocols as well

We can also verify that devices like rocker switches are apparently stateless,
in the sense that they seem to send the same information regardless of their
history when one of their buttons is pressed (they have no memory).

So from our experiments we believe that, in terms of identification, the
devices rely on a lower-level protocol (possibly ESP3) than the one that can be

8This is merely a convention though, as apparently any another EURID could be used
instead at this level. We used to add "provided it is consistently used from then on" (that is:
when learning and also when sending telegram afterwards), yet we could see that even forging
a telegram with a random source EURID but sending it from a right, already learnt device
(hence using another EURID then) is sufficient to have the corresponding request accepted
and processed - at least by some actuators.

19

handled programmatically (e.g. ERP1 and siblings); as these operations seem to
be done through the firmware of the USB gateway, spoofing Enocean traffic may
be out of the reach of programs relying on "standard" USB gateways (therefore
Oceanic having to be involved also in the learn process, not only in the emitting
one).

And forging custom source EURIDs may have an interest, yet the spoofer
must have been previously learnt - otherwise this would be a bit like if one was
spoofing IP addresses in forged packets, whereas the target device would first
compare MAC addresses.

Other Network-Related Risks
The spoofing risk being mostly alleviated, the only extra risks that we could
foresee are:

• possibly brute-force attempts to match already-learnt base identifiers,
from a debug gateway allowing to act on ESP3 packets (a threat that does
not seem likely for common burglaries)

• the jamming of an actuator by saturating it with telegrams (be them
well-formed and sensible, or not9), so that any actual telegram of interest
(e.g. regarding a door opening) may not reach the receiver

• sensors devices being incapacitated before they are able to raise an
alarm (for example destroyed, or possibly flashed by an electromagnetic
impulse)

Oceanic provides basic yet possibly sufficient mechanisms guarding against
these three threats.

For the first two risks: in a wireless context, nothing can be done against
emission, but a configurable threshold in terms of incoming traffic volume can
be monitored (with proper back-off), so that, if the application registered as
a listener, Oceanic notifies it whenever detecting such an attempt of denial of
service - which can be considered by itself as a cause of alarm as serious as the
other ones.

This threshold is expressed in bytes per second (knowing that telegrams are
often fragmented), and its default value (see the oceanic_jamming_threshold
configuration entry) is 250. As the size of many Enocean legit telegrams is 21
bytes, an onEnoceanJamming event will be sent to the Oceanic-using application
should a dozen of them be received during the same second, or a bit more in (a
bit) longer time window (e.g. 20 in two seconds).

For the last risk, sensors (typically opening detectors) report instantly state
transitions but also send periodic state notifications (even if no change hap-
pened). So a listener can monitor the duration elapsed since such a sensor was
last seen, and if it exceeds a threshold (for example 30 minutes10), this may
considered as a reason to raise an alarm.

9A battery-operated, generic-purpose jammer operating on the usual frequencies, like
868 MHz in Europe, may be able to affect most of the (now wireless) protocols for house-
automation just by emitting powerfully-enough random noise on these bandwidths.

10So the event will be detected, albeit with a latency that, depending on the use case, may
or may not be acceptable / useful.

20

For that, the user may request the activity periodicity of a device to be
monitored.

The corresponding checking period (refer to the declared_device_activity_periodicity/0
type) can be:

• directly specified by the user, as a DHMS duration; for instance {0,0,12,0}
will denote an expected (maximum) duration of up to 12 minutes (0 Day,
0 Hour, 12 Minutes, 0 Second) between two telegrams sent by this device
- otherwise the sensor will be reported as lost

• a default one (see default_dhms_periodicity), if the configuration spec-
ified default

• determined automatically by Oceanic, based on the rhythm that it could
learn from past traffic emanating from this device, if the configuration
specified learn or did not set it

Whenever the checking period of a sensor elapses whereas no telegram from
it has been received during that time frame, any process registered as an Oceanic
event listener will be sent an onEnoceanDeviceLost message, specifying notably
the name and EURID of that device, when it has been seen last, and what its
expected periodicity was.

Studying Actual Protocols
To experiment and troubleshoot communication issues (this may be especially
of use should different devices/actuators interpret differently the Enocean spec-
ifications / develop their own behaviour), one may also use tests that perform
direct listening / emitting (possibly bypassing partly the logic of the Oceanic
server):

• use make oceanic_just_record_device_run to display and record in file
(enocean-test-recording.etf) all raw, timestamped telegrams that can
be intercepted

• use make oceanic_just_send_to_device_run to emit raw telegrams, typ-
ically recorded as explained above or forged (encoded) by Oceanic

Corresponding very handy scripts are available as well, decode-telegram.sh
and send-telegram.sh, to which a raw telegram can be given (as an hexadec-
imal string).

Usage Hints
Good Practices

Before any new test, one should properly fully reset one’s actuator, otherwise
weird / wild / overly complex interpretations may happen.

21

Pairing

As mentioned, when using Oceanic as an emitter, it must have been paired to
the target actuator.

Pairing can be done through teach-in (through an exchange of specific tele-
grams) or through learning (putting the actuator in a specific mode, and forcing
the emitter to send a telegram). Some actuators support both procedures.

As detailed in the next section, some actuators are able to learn a device
according to various device types/EEPs (e.g. a rocker as a rocker, or as two
push-buttons).

This choice matters: although this may not impact the telegrams to be sent
by the device, it is bound to impact the behaviour of the actuator when receiving
these telegrams.

Buttons vs Rocker: Transition vs State

Depending on the choice made by the user (typically as selected by pressing
different buttons on the actuator, to enter a given learning mode), an actuator
(e.g. a smart plug controlling a basic lamp) may learn a device (e.g. a rocker)
differently (according to different EEPs).

For example a (single) rocker may be seen:

• case A: either as two independent push-buttons (a top button and an
unrelated bottom one)

• case B: or as a whole rocker (hence two associated buttons together with
the memory of the current state on the actuator)

A key difference is that, in case A (two push-buttons), each button taken
individually may toggle the smart plug, while, in case B (rocker), pressing the
top button whereas the smart plug is already passing (i.e. in the "triggered"
state) will have no effect (e.g. the lamp remains on).

Said differently, case A is about toggling (forcing state transitions) while
case B is about setting (forcing state values).

In the general case, setting (hence the rocker behaviour) may be seen as
more reliable than toggling (the push-button behaviour): a given setting order
may be sent multiple times to a rocker to ensure a given state is reached despite
a possible message loss, whereas a single loss of a toggling message will result
in being consistently from then on in the opposite state of the intended one.

Another approach is to enable and manage state feedback / status return
through confirmation telegrams about the current state of the actuator.

Eltako Socket switching actuator FSSA

In practice, in addition to the documentation, we found clearer to respect the
following procedures:

• to reset: press left-button for about 3 "large" seconds, then the LED
blinks continuously, then press the right-button for about 5 seconds, until
the LED turns off

• to learn a device as:

22

– a push-button : press left-button for about 1 "large" second, then
the LED is on continuously, then press the right-button shortly once;
the LED will blink once and stay fixed until a telegram is received
and learnt: if for example we pressed the top bottom to generate
such telegram, this button will act as a on/off toggle, whereas its
associated bottom button will have no effect

– a "direction push-button" (maybe a synonymous of rocker): press
left-button for about 1 "large" second, then the LED is on continu-
ously, then press the right-button shortly twice; the LED will blink
twice and stay fixed until a telegram is received and learnt; in that
case, even if we pressed only for example the top button (which from
now on corresponds to "set on"), the bottom one will also be taken
into account (even if it was involved in the learning stage) and will
correspond to "set off"

Afterwards, the LED will blink once a telegram of a learnt device is received
(whether or not this specified action has been learnt).

As mentioned in the previous section, we prefer the "direction push-button"
mode, i.e. the rocker-based, "state setting" mode.

Troubleshooting
If an error report such as Cannot open terminal /dev/ttyUSBEnOcean for
read and write is issued, this may be the sign that a past failed serial in-
stance may linger and block the USB dongle.

To check and solve:

$ fuser /dev/ttyUSBEnOcean
/dev/ttyUSB2: 91437

$ ps -edf | grep 91437
bond+ 91437 91408 0 Jan08 ttyUSB2 00:00:00 /home/bond/Software/erlang-serial/erlang/lib/serial-1.1/priv/bin/serial -erlang

$ kill 91437

$ fuser /dev/ttyUSBEnOcean

This should happen in the rare case of a prior crash.

Support
Bugs, questions, remarks, patches, requests for enhancements, etc. are to be
reported to the project interface (typically issues) or directly at the email address
mentioned at the beginning of this document.

Additional Information
• use make sync-sources-to-server if needing to update directly Oceanic’

sources on a remote server that hosts an appropriate USB dongle

23

https://github.com/Olivier-Boudeville/Ceylan-Oceanic
https://github.com/Olivier-Boudeville/Ceylan-Oceanic/issues

• refer to EnOcean in Practice (very clear information, in French)

Similar Projects
They may be used as sources of inspiration:

• [PY-EN] the rather complete Python EnOcean library, including for its
EEP (XML) information

• a Java implementation: enocean4j

• the (Java) OpenEnocean openHAB binding

• a first Rust implementation

Finally, there are nice, interesting integrated solutions like Jeedom that are
mostly open-source (yet the support for Enocean may require closed-source plu-
gins to be bought).

Please React!
If you have information more detailed or more recent than those presented in
this document, if you noticed errors, neglects or points insufficiently discussed,
drop us a line! (for that, follow the Support guidelines).

Ending Word
Have fun with Ceylan-Oceanic!

24

http://tvaira.free.fr/projets/activites/enocean.html
https://github.com/kipe/enocean
https://github.com/kipe/enocean/blob/master/enocean/protocol/EEP.xml
https://github.com/steveohara/enocean4j/tree/master/src/main/java/uk/co/_4ng/enocean/protocol/serial/v3/network/packet
https://github.com/fruggy83/openocean
https://github.com/Cutii/enocean
https://www.jeedom.com
https://market.jeedom.com/index.php?v=d&p=market_display&id=2622

	Table of Contents
	Overview
	A Word About Other Standards and Confidentiality
	Purpose
	Progress & Enocean Coverage
	Testing Ceylan-Oceanic in Two Steps
	Hardware Prerequisites
	Operating System Support
	Software Prerequisites
	Erlang
	Serial
	Ceylan-Myriad
	Ceylan-Oceanic

	Testing Enocean
	Basic, Direct Command-line Testing
	With a Graphical Serial Terminal

	Configuring Oceanic
	Testing Oceanic
	First test: executing a few Common Commands
	Second test: controlling an actual device

	Oceanic Listener Messages
	Enocean Documentation
	Protocol Information
	Guarding Against Spoofing: Lying about One's Source EURID Will Not Suffice
	Other Network-Related Risks
	Studying Actual Protocols
	Usage Hints
	Good Practices
	Pairing
	Buttons vs Rocker: Transition vs State
	Eltako Socket switching actuator FSSA

	Troubleshooting
	Support
	Additional Information
	Similar Projects
	Please React!
	Ending Word

